

Getting Started with Mule Cloud Connect
by Ryan Carter

Copyright © 2013 Ryan Carter. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Mike Hendrickson
Production Editor: Kara Ebrahim
Proofreader: Kara Ebrahim

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Kara Ebrahim

Revision History for the First Edition:
2012-12-19 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449331009 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Getting Started with Mule Cloud Connect, the image of a mule, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-33100-9

[LSI]

1356358928

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449331009

CHAPTER 1

Getting Started

It all starts with a simple API that publishes someone’s status to Facebook, sends a
Tweet, or updates a contact in Salesforce. As you start to integrate more and more of
these external services with your applications, trying to identify the tasks that one might
want to perform when you’re surrounded by SOAP, REST, JSON, XML, GETs, PUTs,
POSTs, and DELETEs, can be a real challenge.

Open APIs are all about endpoints. Most services follow the current trend of providing
a RESTful endpoint, others use older RPC-based protocols such as SOAP or XML-RPC,
some use newer “real-time”, push-focused endpoints like WebSockets or HTTP
Streaming, others may offer a number of different endpoints to meet different require-
ments, and some just use what seems to be best for a specific job, which might mean
not strictly following protocol rules. This is one of the biggest challenges with open
APIs: inconsistency. Figure 1-1 shows the estimated popularity of different styles of
APIs.

Each API is different, with different data formats and authorization mechanisms. One
API’s interpretation of REST may even differ from another. One reason for this is the
nature of REST itself. The RESTful principles come from a paper published by Roy
Fielding in 2000 and since then RESTful services have dominated SOAP-based services
on the web year after year. Although REST services have many advantages over SOAP-
based services, the original paper only included a set of constraints and provides no
specification about how to define a RESTful API and handle things like URI schemes,
authentication, error handling, and more.

By observing the vastly different opinions out there, there is no one right way to define
a RESTful API, which has resulted in many inconsistencies, even between APIs from
the same service provider. Top that off with the remaining SOAP services and newer
technologies such as HTTP Streaming and you’re left with a lot of different API styles
and protocols to learn. Working with all these APIs can just be too damn hard, and
this is where Mule Cloud Connect comes in. Mule Cloud Connect is a powerful, light-
weight toolset providing a consistent interface to a large number of cloud, SaaS, social
media, and Web 2.0 APIs.

1

Figure 1-1. Distribution of API protocols

Cloud Connectors versus the REST of the World
There are many different levels of working with APIs. To put Cloud Connectors into
context, let’s first look at some other approaches to integrating APIs.

To demonstrate, we will use the GeoNames API as our external service. I tend to use
GeoNames as the API equivalent of the Northwind database, because it’s easy to con-
sume (providing both XML and JSON formats) and does not require any account setup
for demo purposes.

GeoNames is a worldwide geographical database that contains over 10 million geo-
graphical names and consists of 7.5 million unique features, of which 2.8 million are
populated places and 5.5 million are alternate names. All features are categorized into
one out of nine feature classes and further subcategorized into one out of 645 feature
codes. In addition to listing names of places in various languages, data stored by Geo-
Names includes latitude, longitude, elevation, population, administrative subdivision,
and postal codes. GeoNames features include direct and reverse geocoding, finding
places through postal codes, finding places next to a given place, and finding Wikipedia
articles about neighboring places.

Transport-Specific Clients
Transport-specific clients deal directly with APIs over the wire. These clients deal with
the actual bytes that pass between your application and the external API. For a RESTful
service, it requires you to build a URL and associate it with the correct URI parameters

2 | Chapter 1: Getting Started

http://www.geonames.org/

and HTTP headers. For a SOAP-based service, it requires you to build the contents
of the HTTP POST yourself, including the SOAP:Envelope and any WS-* content. Ex-
ample 1-1 shows a very simple Java snippet for constructing a simple client for a REST-
ful service using Java’s HTTP packages.

Example 1-1. RESTful Java client with java.net URL

URL url = new URL("http://api.geonames.org/findNearbyJSON" +
 "?lat=37.51&lng=-122.18&username=demo");
HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setRequestMethod("GET");
conn.setRequestProperty("Accept", "application/json");

if (conn.getResponseCode() != 200) { throw new RuntimeException("Failed :
 HTTP error code : " + conn.getResponseCode());
}
BufferedReader br = new BufferedReader(new InputStreamReader(
 (conn.getInputStream())));

String output;
System.out.println("Output from Server \n");
while ((output = br.readLine()) != null) { System.out.println(output);
}

conn.disconnect();

This is the most abstract way of working with APIs. The semantics of HTTP libraries
match the HTTP protocol and not REST or SOAP APIs specifically. This leaves it up
to you to construct URLs, build up request structures, and write them to and from
input and output streams, requiring you to know the API very well.

When you start working with more complex APIs that require connection or state
management, you’re left to do this manually, which is error prone and requires far more
effort to handle reliably.

Language-Specific Clients
Language-specific libraries, such as Jersey clients for Rest APIs or Apache CXF for SOAP
APIs, wrap the underlying protocols in methods that are more familiar and comfortable
for programmers in that language. For example, Example 1-2 shows a very simple code
snippet for using Jersey to invoke RESTful service.

Example 1-2. Jersey REST client

WebResource webResource = client.resource("http://api.geonames.org/findNearbyJSON");
MultivaluedMap queryParams = new MultivaluedMapImpl();
queryParams.add("lat", "lat");
queryParams.add("lng", "-122.18");
queryParams.add("username", "demo");
String s = webResource.queryParams(queryParams).get(String.class);

Cloud Connectors versus the REST of the World | 3

Using this example, the Jersey client libraries abstract away a lot of the HTTP specifics
and make API clients a lot clearer by providing short code that helps express the se-
mantics of the particular API protocol. This is one advantage over using transports, but
you’re still left importing WSDLs for SOAP services and object binding to and from
request structures. If you’re using multiple protocols, you may have to learn and main-
tain multiple libraries. Because they are generic and not specific to any particular API,
you will still have to write custom code to work with each API’s little idiosyncrasies or
custom features such as session-based authentication and OAuth.

Service-Specific Client Libraries
A client library specifically developed for a particular API, such as Twitter4j for the
Twitter APIs, makes things easier by extracting away a lot of the protocol and transport
specifics. Example 1-3 shows an example of working with GeoNames’ Java library.

Example 1-3. Service-specific client library

WebService.setUserName("demo");
ToponymSearchCriteria searchCriteria = new ToponymSearchCriteria();
searchCriteria.setQ("zurich");
ToponymSearchResult searchResult = WebService.search(searchCriteria);
for (Toponym toponym : searchResult.getToponyms()) {
 System.out.println(toponym.getName()+" "+ toponym.getCountryName());
}

Convenient as these are, because they fit the semantics of the service closely, they are
typically developed by the individual service providers or developer communities.
Therefore, there is no consistency between implementations.

Cloud Connectors
Mule Cloud Connect offers a more maintainable way to work with APIs. Built on top
of the Mule and CloudHub integration platforms, Cloud Connectors are service-spe-
cific clients that abstract away the complexities of transports and protocols. Many
complex but common processes such as authorization and session management work
without you having to write a single line of code. Although service-specific, Cloud
Connectors all share a common and consistent interface to configure typical API tasks
such as OAuth, WebHooks, and connection management. They remove the pain from
working with multiple, individual client libraries. Example 1-4 shows a really basic
example of configuring a Cloud Connector to access the GeoNames API, which will
be covered in more detail shortly.

Example 1-4. Cloud Connector configuration

<geonames:config username="demo" />

<geonames:find-nearby-pois-osm latitude="37.451"
 longitude="-127" />

4 | Chapter 1: Getting Started

Cloud Connectors are essentially plain old Java objects (POJOs) developed by Mule
and the community using the Cloud Connect SDK called the DevKit. The DevKit is the
successor to the original Cloud Connect SDK, which was developed with just external
APIs in mind but has since been opened up to create any manner of Mule extension
such as transformers or pretty much anything. The DevKit uses annotations that mimic
typical integration tasks to simplify development, and when processed, are converted
into fully featured components for the Mule ESB and CloudHub integration platforms.

Mule Cloud Connect supports many of the most widely-used open APIs from SaaS to
social media, with more being developed every day. Current Connectors include Twit-
ter, Facebook, LinkedIn, Salesforce, Amazon WebServices, Twillio, and many more.
A full categorized list of available connectors and what they offer can be found here.

Mule: A Primer
Before diving straight into configuring Cloud Connectors, it’s important to understand
some basic concepts. After this short overview, you’ll be ready to build your first ap-
plication and start taking advantage of Mule Cloud Connectors. To begin, we will first
build a simple Mule application that we can use as the base of our examples and in-
troduce some core concepts for those unfamiliar with Mule.

As mentioned previously, Mule is an integration platform that allows developers to
connect applications together quickly and easily, enabling them to exchange data re-
gardless of the different technologies that the applications use. It is also at the core of
CloudHub, an Integration Platform as a Service (IPaaS). CloudHub allows you to in-
tegrate cross-cloud services, create new APIs on top of existing data sources, and inte-
grate on-premise applications with cloud services.

Later in the book we will look at specific connectors, but to start let’s take a look at a
simple API proxy that can be used to mediate an external service and introduce some
transformation and some routing between the two. This application will expose a sim-
ple RESTful interface that can be invoked through a browser or HTTP client, contact
an external service, and transform the returned response to the browser.

Mule Configuration
XML is the format for the files that control Mule, and it uses schemas and namespaces
to provide a dynamic schema language (DSL) authoring environment. Example 1-5
shows the finished application.

Example 1-5. Simple Mule API proxy application

<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns="http://www.mulesoft.org/schema/mule/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:http="http://www.mulesoft.org/schema/mule/http"

Mule: A Primer | 5

http://www.mulesoft.org/extensions

 xsi:schemaLocation="
 http://www.mulesoft.org/schema/mule/core
 http://www.mulesoft.org/schema/mule/core/current/mule.xsd
 http://www.mulesoft.org/schema/mule/http
 http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <flow name="main">
 <http:inbound-endpoint host="localhost" port="8080" path="geonamesproxy"
 exchange-pattern="request-response" />

 <!--
 TODO add your service component here. This can also be a Spring bean
 using <spring-object bean="name"/>
 -->

 <echo-component />

 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM?lat=37.451
 &lng=-122.18&username=demo" method="GET" />
 </flow>
</mule>

Inspecting this configuration, we can see that it is an XML document with a root ele-
ment of mule. This element is the key element and must always be included. It is this
element that contains references to specific Mule modules, via schema and namespace
declarations, to provide the DSL authoring environment. The most important of these
is the core namespace, xmlns="http://www.mulesoft.org/schema/mule/core", which al-
lows you to use all the Mule core components such as flows, routers, transformers, and
filters. The core namespace is then followed by subsequent namespace declarations
that represent individual Mule modules, such as the HTTP module represented by
xmlns:http="http://www.mulesoft.org/schema/mule/http" and the Spring module rep-
resented by xmlns:spring="http://www.springframework.org/schema/beans".

Flows
Within the mule root element is a critical child element: flow. Flows are underlying
configurations for your Mule or CloudHub integration and are the default constructs
for orchestrating message processing. Each flow has a name attribute, which must be a
unique identifier within your configuration. The flow then consists of a message
source followed by a sequence of message processors. Flows are executed from top to
bottom, just like any imperative programming language. Example 1-6 shows the flow
we have created with the unique ID: main.

Example 1-6. A Mule flow

<flow name="main">
 <http:inbound-endpoint host="localhost" port="8080"

6 | Chapter 1: Getting Started

 path="geonamesproxy" exchange-pattern="request-response" />

 <!--
 TODO add your service component here. This can also be a Spring bean
 using <spring-object bean="name"/>
 -->

 <echo-component />

 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM?lat=37.451
 &lng=-122.18&username=demo" method="GET" />
</flow>

Message Sources
A message source appears at the beginning of a flow. It receives or generates messages
and forwards them on to a set of message processors to start working with the message.
The message source is typically an inbound endpoint, such as HTTP or JMS, which
can listen or poll on a certain address. The flow in the previous example has an HTTP
message source for listening on a specific HTTP port, as shown in Example 1-7.

Example 1-7. HTTP message source

<http:inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

In this case, we have added a host attribute with the value localhost, a port attribute
with the value 8080, and a path attribute with the value geonamesproxy. This flow, when
run, will create a web server that will listen on http://localhost:8080/geonamesproxy.

Message Processors
With the message source in place, we now need some message processors to actually
do something with the received message. A message processor is used by Mule to pro-
cess any messages received by a message source. Each processor can be a transformer,
a Java component, or an outbound endpoint to forward on the message to an external
system or to another flow.

In this case, we want to forward the message on to the GeoNames API. The GeoNames
API is a simple HTTP RESTful API, so we can create an HTTP outbound endpoint
similar to that of our message source to forward on the message:

<http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM?lat=37.451
 &lng=-122.18&username=demo" method="GET" />

As you can see, this is very similar to the message source, with the most noticeable
difference being that we have changed the element name from -inbound-endpoint to -

Mule: A Primer | 7

outbound-endpoint. In this element we have then specified an address attribute with the
value of one of the GeoNames APIs and some hard-coded query parameters:

http://api.geonames.org/findNearbyPOIsOSM?
lat=37.451&lng=-122.18&username=demo

The GeoNames API also requires the GET HTTP method, so we have included the
method attribute on the endpoint and set its value to GET.

Variables and Expressions
To support the work of message processors, Mule provides the Mule Expression Lan-
guage (MEL) to access, manipulate, and consume information from the message and
its environment. Mule makes this data available via the following four contexts:

Server
The operating system on which the message processor is running

Mule
The Mule instance on which the application is running

Application
The user application within which the current flow is deployed

Message
The package (payload, attachments, properties) that the message processor is
processing

These contexts are at the heart of most MEL expressions. A typical MEL expression
combines one of these contexts with one or more operands and zero or more operators
in a Java-like syntax and returns the resulting value. For example, to access the payload
of the message, we can use the expression #[message.payload], where message repre-
sents the message context and payload represents the payload property within the
specified context. The syntax consists of a preceding #[followed by the expression to
execute and a terminating] character.

In most cases, MEL expressions work within message processors to modify the way
those processors do their main jobs, such as routing and filtering based on the message
content. The following sections will focus on using the message context and cover some
of the main use-cases that will be used throughout the book.

Message properties

Aside from the payload of the message, which is typically the main body of a message,
message processors such as inbound and outbound endpoints add additional headers
to a message called message properties. Message properties are defined within the fol-
lowing two scopes:

8 | Chapter 1: Getting Started

Inbound properties
Inbound properties are placed on a message receiving a request on an inbound
endpoint or a response from an outbound endpoint. For example, if a message to
an inbound endpoint is called via HTTP with a Content-Type header, this property
will be placed as a property within the inbound scope.

Outbound properties
Outbound properties are set on a message to be sent via an outbound endpoint.
For example, if a message with an outbound property Content-Type is sent via
HTTP, the Content-Type property will be placed as an HTTP header on the out-
bound message.

MEL expressions allow you to refer to these message properties via a java.util.Map
interface. For each property scope, Mule associates a map containing each property
with the current message. You can refer to these maps using the following syntax:

#[message.inboundProperties['someProperty']]
#[message.outboundProperties['someProperty']]

where inboundProperties and outboundProperties are the maps within the message
context and someProperty is they key of the property you want to retrieve from the map.
Example 1-8 amends our GeoNames example to extract the latitude query parameter
from the incoming request to use as an input to the original GeoNames request URL.

Example 1-8. Using message properties

<flow name="main">
 <http:inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

 <!--
 TODO add your service component here. This can also be a Spring bean
 using <spring-object bean="name"/>
 -->

 <echo-component />

 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM
 ?lat=#[message.inboundProperties['latitude']]
 &lng=-122.18&username=demo" method="GET" />
</flow>

With the amended configuration in place, if you execute the flow with your browser
using the URL http://localhost:8080/geonamesproxy?latitude=37.451, Mule will now
propagate the latitude parameter to the lat argument in the GeoNames request URL.

Mule: A Primer | 9

Additional variables

Typically, message properties should be reserved for the Mule message for things such
as HTTP headers or JMS headers. To store additional information during the execution
of a flow, like variables in Java, Mule provides two more types of scoped variables:

Flow variables
Flow variables are global to the current flow. They retain their values as control
passes from one message processor to another. Thus, you can set them in one
message processor and use them in another.

Session variables
Session variables are essentially the same as flow variables, but in addition, when
one flow calls another one via a Mule endpoint, they are propagated and are avail-
able in the subsequent flow.

As with message properties, flow and session variables are available via a
java.util.Map interface. This map data can be referenced using the following syntax:

#[flowVars['someProperty']]
#[sessionVars['someProperty']]

Storing variable data

In order to store variable data, Mule provides a set of message processors to simplify
working with each property or variable scope.

To set a message property, Mule provides the set-property message
processor. This message property works only with outbound scoped properties as the
inbound scoped properties are immutable. The following example shows how to set
the Content-Type property on a message using this message processor:

<set-property propertyName="Content-Type" value="text/plain"/>

This message processor takes two mandatory arguments: propertyName and value.
propertyName is the name of the property to set and value is the value of the property.
Either of these arguments’ values can also be expressions themselves. For example, to
copy the Content-Type property from the inbound scope to the outbound scope, you
could use the following example:

<set-property propertyName="Content-Type"
 value="#[message.inboundProperties['Content-Type']]"/>

As with properties, similar message processors are available for both
flow and session variables. set-variable sets a flow variable and set-session-vari
able sets a session variable. The syntax for these message processors are very similar as
the previous set-property message processor, with variableName being the name of the
variable to set and value being the value of the variable. The following example dem-
onstrates setting both flow and session variables:

Setting properties.

Setting variables.

10 | Chapter 1: Getting Started

<set-variable variableName="myFlowVariable" value="some data"/>

<set-session-variable variableName="mySessionVariable" value="some data"/>

Another way of setting message properties or variables is via enrichment.
Mule provides an enricher element to enrich the current message with extra informa-
tion. It allows you to call out to another resource and set extra information on the
message without overriding the current payload of the message. For example, you can
call out to another endpoint or message processor and store its return value in a message
property or variable. The following example demonstrates this effect, using the enricher
to call the GeoNames service and store the response in a message property:

<flow name="main">
 <http:inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

 <enricher target="#[message.outboundProperties['response']]">
 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM
 ?lat=#[message.inboundProperties['latitude']]
 &lng=-122.18&username=demo" method="GET" />
 </enricher>
</flow>

The target attribute defines how the current message is enriched by using expressions
to define where the value is stored on the message. Here we are using standard MEL
syntax to refer to an outbound property using #[message.outboundProperties['respon
se']. This will add or overwrite the specified message property with the result of the
outbound endpoint. The main difference between using the enricher and the set-prop
erty message processor is that the enricher supports setting the value of the property
via a nested message processor such as an outbound endpoint, whereas the set-prop
erty and other associated message processors only support setting the value’s value
attribute. This just demonstrates the broad strokes of the procedure. More information
on enrichment can be found here.

Functions

In addition to getting or setting information within a specific context, Mule also pro-
vides an expression syntax for executing certain functions. Functions provide a way of
extracting information that doesn’t already exist as a single value within a particular
context. For example, if you have an XML document and care only about a particular
node or value within that document, you can use the xpath function to extract that
particular value. Or if you want extract a specific part of a string, you can use the
regex function, and so on.

Enrichment.

Mule: A Primer | 11

http://www.mulesoft.org/documentation/display/MULE3USER/Message+Enricher

Xpath is a closely related sister specification of the XML document
specification and provides a declarative query language for addressing
parts of an XML document.

Our current configuration will return an XML-formatted document representing the
GeoNames response. Example 1-9 demonstrates using a simple xpath expression to log
the name of the root element.

Example 1-9. Using functions

<flow name="main">
 <http:inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

 <!--
 TODO add your service component here. This can also be a Spring bean
 using <spring-object bean="name"/>
 -->

 <echo-component />

 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM
 ?lat=#[message.inboundProperties['latitude']]
 &lng=-122.18&username=demo" method="GET" />

 <logger level="INFO" message="#[xpath('local-name(/*)')]" />
</flow>

Routing

Mule has always had support for many routing options. Routers in Mule implement
the Enterprise Integration Patterns (EIP). They are message processors that determine
how messages are directed within a flow. Some of the most common routers are:

all
Sends the message to each endpoint

choice
Sends the message to the first endpoint that matches

recipient-list
Sends the message to all endpoints in the expression evaluated with the given
evaluator

round-robin
Each message received by the router is sent to alternating endpoints.

wire-tap
Sends a copy of the message to the supplied endpoint, then passes the original
message to the next processor in the chain

12 | Chapter 1: Getting Started

http://www.w3.org/TR/xpath/

first-successful
Sends the message to the first endpoint that doesn’t throw an exception

splitter
Splits the current message into parts using a MEL expression, or just splits elements
of a list

aggregator
Combines related messages into a message collection

Alongside MEL, routers can decide on a course of action based on the contents, prop-
erties, or context of a message. Example 1-10 demonstrates using the choice router. It
builds upon Example 1-8 to call the GeoNames API only if the latitude property is
sent in the request.

Example 1-10. Choice router with expressions

<flow name="main">
 <http:inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

 <!--
 TODO add your service component here. This can also be a Spring bean
 using <spring-object bean="name"/>
 -->

 <echo-component />

 <choice>
 <when expression="#[message.inboundProperties['latitude']] != null]">
 <http:outbound-endpoint
 address="http://api.geonames.org/findNearbyPOIsOSM
 ?lat=#[message.inboundProperties['latitude']]
 &lng=-122.18&username=demo" method="GET" />
 </when>
 </choice>
</flow>

Summary
This chapter has offered a primer on Mule. You have been introduced to some its core
features, started your first working Mule application, and connected your first API. But
you have merely scratched the surface of Mule, and there are many more features for
you to explore. But you’re now ready to delve into Mule Cloud Connect.

Summary | 13

CHAPTER 2

Cloud Connectors

As with transports, Cloud Connectors can process messages, communicate with a re-
mote system, and be configured as part of a Mule flow. They can take full advantage
of Mule’s DSL authoring environment for autocompletion in your favorite IDE or XML
editor, offering context-sensitive documentation and access to lists of default and valid
values. The main purpose of Mule Cloud Connect is to provide you with an easy way
to connect to the thousands of open APIs out there without having to work with trans-
ports or dealing with the different protocols that each API uses. Over the following
sections we will start to replace transports with Cloud Connectors and discuss in detail
how to get up and running with some of the most popular APIs.

Installing Cloud Connectors
To get started with Mule Cloud Connect, you will first need to download the connector
you want to use. Most Mule modules, such as the HTTP module we used earlier, are
prepackaged with Mule and do not require downloading, but you’ll have to download
and install the Cloud Connectors yourself. Each connector and its associated docu-
mentation is available at MuleForge, but the steps to download a connector differ
slightly depending on your development environment. The following sections detail
the most common approaches.

Maven
If you use Apache Maven to build your Mule projects, you can install Cloud Connectors
by adding dependency entries for each connector you will be using to your Maven
pom.xml file. Each connector’s documentation page provides you with Maven depend-
ency XML snippets that you can simply copy and paste. To install a connector via
Maven, you first need to add the Mule repository to your Maven pom.xml file, as shown
in Example 2-1.

15

http://www.mulesoft.org/muleforge/connectors

Example 2-1. Mule repository configuration

<repositories>
 <repository>
 <id>mulesoft-releases</id>
 <name>MuleSoft Releases Repository</name>
 <url>http://repository.mulesoft.org/releases/</url>
 <layout>default</layout>
 </repsitory>
</repositories>

Once the repository is defined, add a dependency for each connector you want to
use—in Example 2-2, it’s GeoNames.

Example 2-2. Connector dependency configuration

<dependency>
 <groupId>org.mule.modules</groupId>
 <artifactId>mule-module-geonames</artifactId>
 <version>1.0</version>
</dependency>

With your configuration in place, recompiling will download the required connector
and its dependencies. After downloading finishes, the connector will be available to
your Mule application.

Update Sites
If you are using MuleStudio, you can take advantage of the Cloud Connector’s Update
site, shown in Figure 2-1.

Use the Update site as follows:

1. Click Help → Install New Software on the Mule menu bar.

2. After the Install window opens, click Add, which is located to the right of the Work
with field.

3. Enter the unique name of choice for the update site in the Name field (for example,
“Connector Updates”).

4. In the Location field, enter
http://repository.mulesoft.org/connectors/releases/3.3.1, which points to the
Cloud Connector Update site for the current version. In this case 3.3.1.

5. A table will appear displaying the available connectors under community and
standard categories, the newest version, and the connector name.

6. Click the available version, then click Next, and finally click Finish. The connector
will now be available to import into your project.

16 | Chapter 2: Cloud Connectors

Figure 2-1. MuleStudio Update site

After following the onscreen instructions, you will be asked to restart your IDE. After
that completes, the connector will be available to all your Mule applications.

Manual Installation
If you’re not using Maven or Update sites, another option is to download the connector
and directly add it to the build path of your project. Each connector hosted on Mule-
Forge has a download link that will provide you with the connector of choice as a JAR
file.

Be careful when using this method for installing connectors, as there is
no automatic dependency management. If the connector library is reli-
ant on other libraries, which the majority are, you will have to manually
add them yourself, which can be time-consuming and error-prone.

If you are using Mule Studio, you can add the connector JAR file and other dependen-
cies to a particular project as follows:

1. Create a src/main/app/lib directory in your Studio project.

2. Copy the downloaded JAR file to the src/main/app/lib directory.

3. Right click, or select your project and navigate to Project → Properties from the
respective menu.

Installing Cloud Connectors | 17

4. Choose Java Build Path from the left-hand menu and then click the Libraries tab
in the subsequent view.

5. Click Add JARs..., then use the directory view to navigate through your project
and select the JAR files in the src/main/app/lib directory.

6. Click OK on the resulting screens to save the changes and go back to your project.

Alternatively, if you’re using a stand-alone Mule instance, you can then drop the down-
loaded connector JAR file into the lib/user directory of your Mule distribution.

Namespace and Schema Declarations
The programming model for Mule is XML, and it uses schemas and namespaces to
provide a DSL authoring environment. To utilize a connector from a Mule project, you
must first include the namespace and schema location declarations within your Mule
configuration files.

Each connector’s documentation page will provide you with namespace and schema
snippets that you can simply copy and paste. Example 2-3 demonstrates the configu-
ration for the namespace and schema locations for the GeoNames connector.

Example 2-3. Connector namespace declarations

<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns="http://www.mulesoft.org/schema/mule/core"
 xmlns:http="http://www.mulesoft.org/schema/mule/http"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:geonames="http://www.mulesoft.org/schema/mule/geonames"
 xsi:schemaLocation="
 http://www.mulesoft.org/schema/mule/core
 http://www.mulesoft.org/schema/mule/core/current/mule.xsd
 http://www.mulesoft.org/schema/mule/http
 http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
 http://www.mulesoft.org/schema/mule/geonames
 http://www.mulesoft.org/schema/mule/geonames/current/mule-geonames.xsd">
</mule>

Global Configuration
After the namespace and schema locations are defined, every Cloud Connector must
define a config element. This element is used for setting global service properties such
as credentials, security tokens, and API keys. This configuration then applies to all the
operations supported by the connector, and once defined, cannot be overridden within
a flow.

Each connector’s config element provides a name attribute, which adds an identifier to
each configuration so it can be referenced from each connector operation to let Mule
know which service configuration to use. Other attributes then differ between each

18 | Chapter 2: Cloud Connectors

connector. In this case, the GeoNames connector requires that you configure the user
name attribute that maps to the username parameter of the service:

<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns="http://www.mulesoft.org/schema/mule/core"
 xmlns:http="http://www.mulesoft.org/schema/mule/http"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:geonames="http://www.mulesoft.org/schema/mule/geonames"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.mulesoft.org/schema/mule/core
 http://www.mulesoft.org/schema/mule/core/current/mule.xsd
 http://www.mulesoft.org/schema/mule/http
 http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
 http://www.mulesoft.org/schema/mule/geonames
 http://www.mulesoft.org/schema/mule/geonames/current/mule-geonames.xsd">

 <geonames:config username="demo" />

 <flow name="main">
 ...
 </flow>

</mule>

As you can see here, we are defining the config element within our mule configuration,
but outside of any flow.

Multiple Connector Configurations
Each global config element has a name attribute and each connector operation has a
corresponding config-ref attribute that associates the operation with the specific con-
figuration to use. If only one config element per connector is present within your app,
it is not necessary to explicitly reference a specific configuration, as Mule will default
to the only one available. However, if you have multiple configurations per connector,
you must explicitly reference the configuration via the config-ref attribute on each
connector operation.

As you can see from Example 2-4, we have two GeoNames connector configurations.
Each of them has a unique name attribute that adds an identifier to each configuration.
Underneath the covers, Mule will instantiate two copies of your connector and register
them within its registry with the name supplied.

Example 2-4. Referencing connector configurations

<?xml version="1.0" encoding="UTF-8"?>
<mule xmlns="http://www.mulesoft.org/schema/mule/core"
 xmlns:http="http://www.mulesoft.org/schema/mule/http"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"

Global Configuration | 19

 xmlns:geonames="http://www.mulesoft.org/schema/mule/geonames"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.mulesoft.org/schema/mule/core
 http://www.mulesoft.org/schema/mule/core/current/mule.xsd
 http://www.mulesoft.org/schema/mule/http
 http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
 http://www.mulesoft.org/schema/mule/geonames
 http://www.mulesoft.org/schema/mule/geonames/current/mule-geonames.xsd">

 <geonames:config username="demo" name="config1" />

 <geonames:config username="anotherUser" name="config2" />

 <flow name="main">
 <http:inbound-endpoint host="localhost" port="8080"
 path="geonamesproxy" exchange-pattern="request-response" />

 <geonames:find-nearby-pois-osm
 latitude="37.451"
 longitude="-122.18"
 config-ref="config1" />

 <geonames:find-nearby-pois-osm
 latitude="37.451"
 longitude="-122.18"
 config-ref="config2" />
 </flow>

</mule>

Operations are then defined as usual, with the difference that each operation has an
attached config-ref attribute that will signal the configuration to use it for that par-
ticular operation.

Connector Operations
Connector operations wrap up connectivity to external systems or some logic into a
simple call that an application can make within its flow. Each operation typically rep-
resents a particular API or function that the service provides. Connector operations can
be used anywhere in a flow and can be used in a similar way to transports to invoke a
remote service:

<geonames:find-nearby-pois-osm ... />

Each operation is composed of the namespace we previously bound for the connector
(geonames:) and the operation name (in this case, find-nearby-pois-osm). All available
operations for a connector are accessible via content assist in your IDE or via the con-
nector’s documentation.

20 | Chapter 2: Cloud Connectors

Simple Arguments
Instead of using URL query and path parameters, any basic arguments to the API are
represented as attributes on the operation that map message payload and properties
directly to API arguments. Attributes can be optional or mandatory and can provide
content assisted values for enumerations and default values for properties that are not
specified.

The following example uses the find-nearby-pois-osm operation, which represents the
GeoNames Find Nearby Points of Interest API, to find the nearest points of interests
for a given lat/lng pair:

<geonames:find-nearby-pois-osm latitude="37.451" longitude="-127" />

The operation accepts multiple arguments, some required and some optional. The first
required arguments, latitude and longitude, are basic java.lang.String parameters
that represent the specific coordinates.

Most simple arguments are represented as a java.lang.String type, but some argu-
ments that require more specific types, such as java.util.Date, need to be constructed
as the specific type. Using java.util.Date as an example, you may be inclined to con-
figure a date argument as follows, which would lead to an error:

<someconnector:operation date="1984-06-03" />

This configuration would pass the date to the connector as a String, when the con-
nector needs a java.util.Date type. The correct way to map the date value to the ar-
gument is to generate a java.util.Date object. One convenient way is to use the
groovy expression evaluator, like so:

<someconnector:operation
 date="#[groovy:Date.parse("yyyy-MM-dd", "1984-06-03")]" />

The same also goes for boolean values. If you need to pass in a boolean value, construct
it as the correct type using a groovy expression again:

<someconnector:operation true-or-false="#[groovy:true]" />

Information on each argument’s type can be found at the connector’s documentation
page online and also as part of content assist. Connectors and the DevKit have support
for the following types:

• int

• float

• long

• byte

• short

• double

• boolean

Connector Operations | 21

• char

• java.lang.Integer

• java.lang.Float

• java.lang.Long

• java.lang.Byte

• java.lang.Short

• java.lang.Double

• java.lang.Boolean

• java.lang.Character

• java.lang.String

• java.math.BigDecimal

• java.math.BigInteger

• java.util.Date

• java.lang.Class

• java.net.URL

• java.net.URI

Collections and Structured Arguments

Complex types

More complex arguments, such as collections or structured objects that can’t really be
expressed as simple attributes, can instead be represented as complex types as child
elements within the operation itself. Example 2-5 demonstrates using the GeoNames
astergdem operation, which accepts a set of lists for latitudes and longitudes as input.

Example 2-5. Collections configuration

<geonames:astergdem>
 <geonames:latitudes>
 <geonames:latitude>37.451</geonames:latitude>
 <geonames:latitude>37.450</geonames:latitude>
 </geonames:latitudes>
 <geonames:longitudes>
 <geonames:longitude>-122.18</geonames:longitude>
 <geonames:longitude>-122.18</geonames:longitude>
 </geonames:longitudes>
</geonames:astergdem>

The example first defines the root element for each list (for example, geonames:lati
tudes). Secondly, the list’s root element contains an array of child elements representing
the list items (for example, geonames:latitude).

22 | Chapter 2: Cloud Connectors

As with collections, any complex types such as custom Java classes can be passed to
the operation via child elements. Let’s take a look at the following example from the
GetSatisfaction connector. One of the connectors operations, getsatisfaction:create-
topic-at-company, has a method signature that requires a custom Java class:
org.mule.module.getsatisfaction.model.Topic. Inspecting this class you will see that
it’s a simple POJO with some fields for subject, content, products, etc., similar to the
following snippet:

public class Topic extends Post {
 ...
 private String subject;
 private String content;
 private Style style;
 private List<Product> products;
 private List<String> keywords;
 ...
}

Any custom classes like this are automatically deconstructed and reconstructed as
complex types within the schemas themselves, enabling them to be defined easily as
child elements of the operation.

As you can see in Example 2-6, the topic class is now constructed directly using XML
via the getsatisfaction:topic element. Any simple properties of the class (as docu-
mented in the earlier list of supported types) are represented as normal (attributes on
the element directly), such as subject, content, and style. And any complex properties
such as custom classes and collections are represented as further nested complex types
within the element, as demonstrated by the getsatisfaction:product property.

Example 2-6. Complex type configuration

<getsatisfaction:create-topic-at-company companyId="mulesoft">
 <getsatisfaction:topic
 subject="test for product affiliate"
 content="additional detail goes here"
 style="PRAISE">
 <getsatisfaction:products>
 <getsatisfaction:product name="muleion"/>
 </getsatisfaction:products>
 <getsatisfaction:keywords>
 <getsatisfaction:keyword>keyword</getsatisfaction:keyword>
 </getsatisfaction:keywords>
 </getsatisfaction:topic>
</getsatisfaction:create-topic-at-company>

Passing by reference

For everything else that is not in the supported list of types, the DevKit allows the
information to be passed along using references. As we saw in Example 2-5 and Ex-
ample 2-6, we can build up our objects using the strongly typed schemas that represent
the object itself. However, in previous versions of the DevKit, this wasn’t possible, and

Connector Operations | 23

even now you may want to reference an object or collection already constructed else-
where. To allow this, connector operations that require structured arguments also al-
low you to reference preconstructed arguments via an attribute on the child element
named ref.

Using the Collections example in Example 2-5, we can instead build our list outside of
our operation and refer to it as follows:

<spring:bean id="latitudeA" class="java.lang.String">
 <spring:constructor-arg value="37.451" />
</spring:bean>

<spring:bean id="latitudeB" class="java.lang.String">
 <spring:constructor-arg value="37.451" />
</spring:bean>

<spring:bean id="list"
 class="org.springframework.beans.factory.config.ListFactoryBean">
 <spring:property name="sourceList">
 <spring:list>
 <spring:ref bean="latitudeA" />
 <spring:ref bean="latitudeB" />
 </spring:list>
 </spring:property>
</spring:bean>

...

<geonames:astergdem>
 <geonames:latitudes ref="list" />
</geonames:astergdem>

This example uses spring to manually build our list from two Strings and then reference
the list from a ref attribute using the id of the spring:bean (in this case, list).

The same functionality we’ve shown for collections can be applied to custom classes.
Using the complex type example in Example 2-6, we can instead build the object outside
of the operation and then reference it as follows:

<spring:bean id="keywordA" class="java.lang.String">
 <spring:constructor-arg value="muleion" />
</spring:bean>

<spring:bean id="product" class="org.mule.module.getsatisfaction.model.Product">
 <spring:constructor-arg value="muleion" />
</spring:bean>

<spring:bean id="keywords" class="org.springframework.beans.factory.config.
 ListFactoryBean">
 <spring:property name="sourceList">
 <spring:list>
 <spring:ref bean="keywordA"/>
 </spring:list>
 </spring:property>

24 | Chapter 2: Cloud Connectors

</spring:bean>

<spring:bean id="topic"
 class="org.mule.module.getsatisfaction.model.Topic">
 <spring:property name="subject" value="test for product affiliate" />
 <spring:property name="content" value="additional detail goes here" />
 <spring:property name="keywords" ref="keywords" />
 <spring:property name="product" ref="product" />
</spring:bean>

...

<getsatisfaction:create-topic-at-company companyId="mulesoft">
 <getsatisfaction:topic ref="topic" />
</getsatisfaction:create-topic-at-company>

This example uses spring to manually build our org.mule.module.getsatisfac

tion.model.Topic object and then reference it from the ref attribute using the id of the
spring:bean (in this case, topic).

Expression Evaluation
Previous examples use static values as inputs to operation arguments, but in real life
you will probably want to use variable values extracted from requests, responses, or
properties files. To support this, each connector operation can handle full expression
evaluation and argument transformation as shown in “Variables and Expres-
sions” on page 8.

The expression evaluation performed by Example 2-7 allows us to parameterize values
to operations from a variety of sources. This example uses the MEL to extract the
parameters from the header of an incoming HTTP request, but if the source of the
message is XML, JSON, or pretty much anything, there’s an expression evaluator for
it. More information on expressions can be found here.

Example 2-7. Connector operation with expressions

<geonames:find-nearby-pois-osm
 latitude="#[message.inboundProperties['latitude']]"
 longitude="#[message.inboundProperties['longitude']]" />

Parsing the Response
The response format from each operation can differ between connectors. Most con-
nectors provide the raw response from the service provider’s API and will also provide
a choice between multiple response formats, if available. Take GeoNames for example.
GeoNames offers both XML and JSON formatted responses. The configuration in
Example 1-4 would result in the operation returning the default response format, XML.
Once invoked, it will return an XML response similar to the following:

Connector Operations | 25

http://www.mulesoft.org/documentation/display/MULE3USER/Expressions+Configuration+Reference

<?xml version="1.0" encoding="UTF-8"?>
<geonames>
 <poi>
 <name>Cook's Seafood</name>
 <typeClass>amenity</typeClass>
 <typeName>restaurant</typeName>
 <lng>-122.1795529</lng>
 <lat>37.4516093</lat>
 <distance>0.08</distance>
 </poi>
 <poi>
 <name>Starbucks</name>
 <typeClass>amenity</typeClass>
 <typeName>cafe</typeName>
 <lng>-122.1803386</lng>
 <lat>37.452055</lat>
 <distance>0.12</distance>
 </poi>
 <poi>
 <name>Safeway</name>
 <typeClass>shop</typeClass>
 <typeName>supermarket</typeName>
 <lng>-122.1787081</lng>
 <lat>37.4507461</lat>
 <distance>0.12</distance>
 </poi>
 <poi>
 <name>Akasaka</name>
 <typeClass>amenity</typeClass>
 <typeName>restaurant</typeName>
 <lng>-122.1809239</lng>
 <lat>37.4524367</lat>
 <distance>0.18</distance>
 </poi>
</geonames>

As with many other connectors, the GeoNames connector allows you to switch between
the available response formats by specifying an optional argument either on the oper-
ation itself or via the connector’s config element. In the case of the GeoNames con-
nector, you can specify the argument at the operation level through the attribute named
type:

 <geonames:find-nearby-pois-osm latitude="37.51"
 longitude="-122.18" type="json"/>

Here we have added the optional type argument and set it’s value to json. With this
new configuration in place, instead of seeing XML, you should now see a JSON-for-
matted response, similar to the following:

{"poi":[
 {"typeName":"restaurant","distance":"0.08","name":"Cook's Seafood",
 "lng":"-122.1795529","typeClass":"amenity","lat":"37.4516093"},
 {"typeName":"cafe","distance":"0.12","name":"Starbucks",
 "lng":"-122.1803386","typeClass":"amenity","lat":"37.452055"},
 {"typeName":"fire_hydrant","distance":"0.14","name":"",

26 | Chapter 2: Cloud Connectors

 "lng":"-122.1784682","typeClass":"amenity","lat":"37.4510495"},
 {"typeName":"fire_hydrant","distance":"0.19","name":"",
 "lng":"-122.1800146","typeClass":"amenity","lat":"37.4493291"},
 {"typeName":"restaurant","distance":"0.18","name":"Akasaka",
 "lng":"-122.1809239","typeClass":"amenity","lat":"37.4524367"},
 {"typeName":"fast_food","distance":"0.16","name":"Rubios",
 "lng":"-122.1784509","typeClass":"amenity","lat":"37.4501701"},
 {"typeName":"cinema","distance":"0.21","name":"Guild",
 "lng":"-122.1812488","typeClass":"amenity","lat":"37.4525935"},
 {"typeName":"cafe","distance":"0.22","name":"Pete's Coffee",
 "lng":"-122.1780217","typeClass":"amenity","lat":"37.4498336"},
 {"typeName":"fast_food","distance":"0.23","name":"Applewood2Go",
 "lng":"-122.1816743","typeClass":"amenity","lat":"37.4526078"},
 {"typeName":"fire_hydrant","distance":"0.23","name":"",
 "lng":"-122.178034","typeClass":"amenity","lat":"37.449606"}
]}

If you are unsure what response formats are available, or at what level they are config-
ured, they can be found by using content assist or by reading the connector documen-
tation. Additional information on particular responses can also be found using the
service provider’s documentation.

Summary
In summary, Cloud Connectors make the simple tasks easy and the hard tasks possible
by taking a step back from HTTP and protocols to provide a higher level of abstraction
and a consistent interaction model with APIs, allowing developers to concentrate on
the task at hand.

The examples in this chapter are reasonably straightforward: read-only operations, no
complex authorization mechanisms, etc. But even these types of APIs can be difficult
to work with, the ones that make you jump through hoops in order to perform a task
that should be dead simple to do.

The upcoming chapters will take a look at how Cloud Connectors can simplify even
more complex APIs and deal with authorization, events, connection management, and
more.

Summary | 27

	Chapter 1. Getting Started
	Chapter 1. Getting Started
	Cloud Connectors versus the REST of the World
	Transport-Specific Clients

	Chapter 1. Getting Started
	Cloud Connectors versus the REST of the World
	Language-Specific Clients

	Chapter 1. Getting Started
	Cloud Connectors versus the REST of the World
	Service-Specific Client Libraries
	Cloud Connectors

	Chapter 1. Getting Started
	Mule: A Primer
	Mule Configuration

	Chapter 1. Getting Started
	Mule: A Primer
	Flows

	Chapter 1. Getting Started
	Mule: A Primer
	Message Sources
	Message Processors

	Chapter 1. Getting Started
	Mule: A Primer
	Variables and Expressions
	Message properties

	Chapter 1. Getting Started
	Mule: A Primer
	Variables and Expressions
	Additional variables
	Storing variable data
	Setting properties
	Setting variables

	Chapter 1. Getting Started
	Mule: A Primer
	Variables and Expressions
	Functions
	Enrichment

	Chapter 1. Getting Started
	Mule: A Primer
	Variables and Expressions
	Routing

	Chapter 1. Getting Started
	Summary

	Chapter 2. Cloud Connectors
	Installing Cloud Connectors
	Maven

	Chapter 2. Cloud Connectors
	Installing Cloud Connectors
	Update Sites

	Chapter 2. Cloud Connectors
	Installing Cloud Connectors
	Manual Installation

	Chapter 2. Cloud Connectors
	Namespace and Schema Declarations
	Global Configuration

	Chapter 2. Cloud Connectors
	Global Configuration
	Multiple Connector Configurations

	Chapter 2. Cloud Connectors
	Connector Operations

	Chapter 2. Cloud Connectors
	Connector Operations
	Simple Arguments

	Chapter 2. Cloud Connectors
	Connector Operations
	Collections and Structured Arguments
	Complex types

	Chapter 2. Cloud Connectors
	Connector Operations
	Collections and Structured Arguments
	Passing by reference

	Chapter 2. Cloud Connectors
	Connector Operations
	Expression Evaluation
	Parsing the Response

	Chapter 2. Cloud Connectors
	Summary

