
Reference Cards

Asynchronous message processing with Mule

Asynchronous flows
Setting exchange-pattern of a message source to “one-way” enables asynchronous processing for a flow. Some transports and

connectors, like JMS or the VM transport, are asynchronous by default. Other transports which are inherently synchronous, like HTTP,

need there exchange pattern explicitly set. Setting one-way exchange patterns on these transports allows you to simulate asynchro-

nous behavior with protocols that would otherwise not be asynchronous.

<flow name="HTTP to JMS Flow">

 <http:inbound-endpoint address="http://localhost:8080/foo" exchange-pattern="one-way"/>

 <jms:outbound-endpoint queue="messages"/>

</flow>

Message aggregation
You can process asynchronously dispatched messages in groups by using the collection-aggregator. Message groups are defined by

setting the correlationId property of a MuleMessage or by setting the MULE_CORRELATION_ID outbound header. The correlationGroupSize

property of MuleMessage, or the MULE_CORRELATION_GROUP_SIZE header, define the amount of messages in a group.

<flow>

 <vm:inbound-endpoint path="foo.bar" exchange-pattern=”one-way”/>

 <collection-aggregator-router timeout="6000" failOnTimeout="false">

 <payload-type-filter expectedType="org.foo.some.Object"/>

 </collection-aggregator-router>

</flow>

Message chunking
Split message payloads can be reassembled by using the message-chunking-aggregator-router. By default the

message-chunking-aggregator-router will use the correlationId and correlationGroupSize propertis of the MuleMessage for reassembly.

You can define an optional “correlationIdExpression” to reassemble with a different message property.

<flow>

 <vm:inbound-endpoint path="foo.bar"/>

 <message-chunking-aggregator-router>

 <expression-message-info-mapping correlationIdExpression="#[header:INBOUND:myCustomHeader]"/>

 <payload-type-filter expectedType="org.foo.some.Object"/>

 </message-chunking-aggregator-router>

</flow>

Asynchronously bridging an HTTP request to JMS

Asynchronously processing a message group

Split a java.util.List and route to a JMS queue based on type

Message splitting
Some message payloads, like collections or XML documents, can be split and dispatched asynchronously. Available message splitters:

<outbound>

 <list-message-splitter-router>

 <jms:outbound-endpoint queue="order.queue">

 <payload-type-filter expectedType="com.foo.Order"/>

 </jms:outbound-endpoint>

 <jms:outbound-endpoint queue="item.queue">

 <payload-type-filter expectedType="com.foo.Item"/>

 </jms:outbound-endpoint>

 <payload-type-filter expectedType="java.util.List"/>

 </list-message-splitter-router>

</outbound>

<queued-asynchronous-processing-strategy name="allow500Threads" maxThreads="500"/>

<flow name="acceptOrders" processingStrategy="allow500Threads">

 <vm:inbound-endpoint path="acceptOrders" exchange-pattern="one-way"/>

 <vm:outbound-endpoint path="commonProcessing" exchange-pattern="one-way"/>

</flow>

list-message-splitter-router

expression-splitter-router

mulexml:filter-based-splitter

Split a list

Split a message using the Mule Expression Language

Split an XML document based on an XPath Expression

Tuning
Asynchronous processing for a flow can be tuned by defining a queued-asynchronous-processing-strategy.

Multiple queued-asynchronous-processing-strategy can be defined and set using the flow’s “processingStrategy” attribute.

maxBufferSize

maxQueueSize

maxThreads

minThreads

poolExhaustedAction

queueTimeout

threadTTL

threadWaitTimeout

Determines how many requests are queued when the pool reaches maximum capacity and the pool

exhausted action is WAIT. The buffer is used as an overflow.

The maximum number of messages that can be queued

The maximum number of threads that can be used.

The number of idle threads kept in the pool when there is no load.

When the maximum pool size or queue size is bounded, this value determines how to handle

incoming tasks. Either “WAIT”, “DISCARD”, “DISCARD_OLDEST”, “ABORT” or “RUN”

The timeout used when taking events from the queue.

Determines how long an inactive thread is kept in the pool before being discarded.

How long to wait in milliseconds when the pool exhausted action is WAIT. If the value is negative,

the wait is infinite.

Asynchronously bridging an HTTP request to JMS

Configuring a flow to use up to 500 threads to asynchronous process messages arriving a VM inbound-endpoint

©2012 MuleSoft, Inc. All rights reserved. Get more Reference Cards at www.mulesoft.com/training

